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Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called
double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been
shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory
for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations
differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-
wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenua-
tion. Thus, the question how this difference can be understood more pictorially is often raised. In this
rather educational manuscript, the phase evolution during a DWV experiment for simple geometries,
e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is con-
sidered step-by-step and demonstrates how the signal difference develops. Considering the populations
of the phase distributions obtained, the factor of three between the signal decays which is predicted by
the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector ori-
entations can be derived when investigating diffusion in a box. Thus, the presented ‘‘phase gymnastics’’
approach may help to understand the signal modulation observed in DWV experiments at short mixing
times.

� 2010 Elsevier Inc. All rights reserved.
1. Motivation the signal decay present for the parallel wave vector orientation is
Double-wave-vector diffusion-weighting (DWV) experiments
[1–4] with short mixing times involve two diffusion-weighting
periods applied in direct succession in a single acquisition
(Fig. 1a). In a first theoretical approach [3], it has been shown that
the signal amplitude of such experiments depends on the angle be-
tween the two wave vectors h, for small wave vectors with cosh,
but only if the diffusion is restricted (see Appendix A). The ampli-
tude of this restriction-specific modulation is proportional to the
so-called mean-squared radius of gyration of the pores which in-
creases with the pore size. Thus, such experiments have been
shown to be a promising tool to investigate a sample’s microstruc-
ture [5–8] and are of particular interest for the characterization of
tissue in vivo [9,10].

The simplest and most reliable way to observe this restriction ef-
fect and estimate pore or cell sizes is to apply two experiments, with
parallel and with antiparallel wave vector orientations, i.e. to sam-
ple the maximum and minimum of the signal modulation. Thereby,
ll rights reserved.
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expected to be three times that of the antiparallel orientation
according to the theory (see Appendix A) [3]. This signal difference
is often considered to be strange because both experiments differ
only by the polarity of one of the wave vectors and such an inversion
has no effect on the diffusion-weighted signal in simple single-
wave-vector experiments with one diffusion-weighting period. Fur-
thermore, the b values of the parallel and antiparallel orientation
are equal for non-overlapping diffusion-weighting periods
(Fig. 1a) which means that no signal difference shows up for freely
diffusing spins. Thus, although the mathematical equations are not
called into question, there seems to be the need for a more vivid
point-of-view of the origin of this signal difference.

The present manuscript is an attempt to present such a perspec-
tive by considering the step-by-step phase evolution (‘‘phase gym-
nastics’’) in simple geometries during a short-mixing-time DWV
experiment. Thus, it will neither report novel scientific results
nor predict new effects but aims to provide a better understanding
of the principles underlying the described signal modulation.
2. Phase evolution

In accordance with the basic theory [3] (see Appendix), the
phase evolution will be considered for restricted geometries under
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Fig. 1. Basic pulse sequences for the double-wave-vector (DWV) experiment. The
variant without refocussing RF pulses shown in (b) was used for the considerations
of the phase evolution. Note that the diffusion-weighting scheme in (a) and (b)
corresponds to a parallel orientation of the two wave vectors.
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Fig. 2. Schematic phase diagrams for three different positions between the two plane
experiment indicated in Fig. 1b for parallel wave vector orientations. The time points t5–t7

range with a broader distribution for parallel wave vectors, which yields a higher signal
phase populations which are considered in details in Fig. 3. For details see text.
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the assumption of short gradient pulse durations d, i.e. an instanta-
neous decoding of the spins’ phases, a long diffusion time that en-
sures a complete mixing of spins from any position, and a short
mixing time sm, however, without an overlap of the two diffu-
sion-weighting periods, i.e. with sm = d (Fig. 1a).

For clarity, the pulse sequence of Fig. 1b will be used, where no
refocussing RF pulses are applied. Furthermore, only parallel, anti-
parallel, and orthogonal wave vectors are considered. Note that
‘‘parallel’’ as defined in [3] and used herein, means that the rephasing
gradient of the first wave vector and the dephasing gradient of the
second wave vector have the same polarity as shown in Fig. 1a and b.
2.1. Diffusion between parallel planes

As a simple example, diffusion of spins between parallel, imper-
meable planes oriented perpendicular to the parallel or antiparallel
wave vectors, is investigated for a constant spin density (see Fig. 2).
For simplicity, it is assumed that the planes are centered around
the isocenter, i.e. spins in the middle between the two planes are
t wave vector

d wave vector
parallel

s (outermost left, center, and outermost right) at the different times of the DWV
were obtained for a short mixing time. At the final time t7, the phases cover a larger

decay. Note that the arrow lengths were chosen to qualitatively reflect the relative
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not affected (yellow) by the diffusion gradient pulses while those
touching the planes yield a maximum phase tilt of a in opposite
directions, either positive (green; small, curved arrow pointing
right) or negative (red; small, curved arrow pointing left),
respectively.

Fig. 2 demonstrates the phase evolution during the DWV exper-
iment shown in Fig. 1b for parallel and antiparallel wave vector ori-
entations. Note that the relative arrow lengths in each ‘‘bouquet’’ of
arrows qualitatively reflect the relative population of the corre-
sponding phase which will be considered in more detail below.

Prior to the first diffusion-weighting gradient pulse (t0), the
spins are in phase yielding the maximum magnetization. The first,
dephasing gradient pulse changes the phase of the spins, at the
outermost positions by ±a (t1). During the diffusion time which
was assumed to be long, the spins from all positions have time
to diffuse to anywhere between the two planes. This implies that
at the end of the diffusion time (t2) (i) the same phase distribu-
tion is found at any position between the planes and (ii) it repre-
sents a mixture of all spin phases present prior to the diffusion
time, i.e. a uniform distribution between ±a. The second, rephas-
ing gradient (t3) tilts these distributions by up to �a, i.e. in a
direction opposite to the first, dephasing gradient pulse. Thus,
the spins’ phases between the planes are distributed over an
angular range of 4a. It is obvious that this phase dispersion yields
an overall signal that is reduced compared to the initial magneti-
zation which reflects the diffusion-induced signal attenuation of
the (single-wave-vector) experiment considered so far. For a
short-mixing-time experiment, the phases will not change during
the mixing time (t4).

To consider the effect of the second wave vector the two cases
of a parallel (right panel) and an antiparallel wave vector orienta-
tion (left panel) are distinguished. For the antiparallel orientation,
the third, dephasing gradient has an inverted polarity compared to
the second, rephasing one, i.e. the phase tilt introduced by that gra-
dient pulse is compensated, because short gradient pulses were
assumed, immediately and completely. This also means that the
phase distribution after the third gradient pulse (t5) is identical
to that prior to the second: a spatially uniform distribution cover-
ing the range between �a and +a at any position. The second dif-
fusion time then has no additional effect because identical
distributions are mixed up (t6). The final, rephasing gradient then
tilts the phases again by ±a and exactly reproduces the phase
distribution observed after the first rephasing gradient (t7).

The fact that the second diffusion weighting does not provide
any additional effect, is obvious if the assumptions are recalled.
Effectively, the second and third gradient cancel each other
immediately (d,sm ? 0), which means that the two-wave-vector
experiment with antiparallel orientations is identical to a single-
wave-vector experiment with the doubled diffusion time. How-
ever, as the diffusion was assumed to be long (D ?1), a further
prolongation has no additional effect.

This is different for the parallel wave vector orientation, where
the third, dephasing gradient pulse amplifies the phase tilt intro-
duced by the preceding gradient (t5) which is the crucial difference
between the two orientations. Thus, the angular range covered by
the phases is further increased by 2a yielding 6a in total if all posi-
tions are taken into account. During the second diffusion time, the
spins mixup again completely and at the end of the diffusion time
(t6) the phase distribution is identical at all positions spanning an
angle of 6a. The final, rephasing gradient adds another tilt by ±a
(t7) distributing the phases over a total range of 8a.

Thus, the phases cover a larger range than for the antiparallel
orientation (4a) which explains the higher signal decay for the par-
allel orientation. For a more detailed exploitation, the populations
of the different phase states need to be considered which is per-
formed in the next section.
2.2. Phase distributions

In Fig. 3, the phase distributions present at the different times
considered in Fig. 2 are sketched. Thereby, two distributions are
distinguished. First, shown in the left panels, the local phase distri-
bution which describes the phases relative to the local mean (or
center) phase at each position. This distribution is the same for
all different spatial positions within the sample at any time: for
each time point, the arrow ‘‘bouquets’’ for the three positions be-
tween the planes shown in Fig. 2 differ only by a rotation of the
whole ‘‘bouquets’’. Second, presented in the middle panels, the dis-
tribution of the center phases for the different positions between
the planes, i.e. the angle the ‘‘bouquets’’ are rotated by, at the dif-
ferent positions. Because the local distribution is present at each
center position, the total phase distribution within the sample
(right panels) is simply the convolution of these two distributions.

Since the effects of the different gradient pulses and diffusion
times on the phases are shown in Fig. 2 and have been described
above in detail, only a short repetition with respect to the specific
phase distribution is given here. Prior to the first diffusion gradient
(t0), all phases are identical, i.e. the local as well as the mean phase
distribution represent d functions. The first, dephasing gradient,
causes a distribution of the center phase between �a and a while
the local distribution is still a d function (t1): at each position only a
unique phase is present. After the diffusion time (t2), the total
phase distribution present prior to the diffusion time is found at
any position, i.e. the local phase distribution is identical to the total
prior to the diffusion time, while the center phase distribution is
again equal to a d function (note that these changes do not alter
the total phase distribution as expected). With the second, rephas-
ing gradient (t3), the center phase again is uniformly distributed
within ±a which yields a triangular total phase distribution
between ±2a.

For the antiparallel wave vector orientation, the third, dephas-
ing gradient (t5) changes the center phase distribution back to a
d function while the final, rephasing gradient (t7) restores the uni-
form distribution between ±a, i.e. the triangular total phase distri-
bution between ±2a as for t3.

For the parallel orientation, the third, dephasing gradient (t5)
spreads the center phases over a range of ±2a which is the impor-
tant contrast to the d function for the antiparallel case. It changes
the total phase distribution to a trapezoidal shape covering ±3a.
During the diffusion time, the local phase distribution is replaced
by the trapezoidal total distribution while the center phase distri-
bution collapses to a d function (t6). The last, rephasing gradient
(t7) again causes a uniform center phase distribution between ±a.
Thus, a bell-shaped, piecewise quadratic total phase distribution
is obtained which is broader than the corresponding distribution
for the antiparallel orientation (gray line).

The effective signal amplitudes resulting from the two total
phase distributions observed after the second wave vector, the tri-
angular for the antiparallel and the piecewise quadratic for the par-
allel wave vector orientation, are considered in Appendix B for
small wave vectors. A factor of three is easily obtained for the
relative signal decays which is consistent with the theory (see
Appendix A). But it should be emphasized that the phase distribu-
tions were derived exactly, i.e. they are valid for any wave vec-
tor amplitude. Thus, this model could also provide a simple
approach to compute higher order effects within the short-pulse
approximation.

2.3. Long mixing time and finite timing parameters

The short mixing time between the two wave vectors is crucial
to observe the difference between the two wave vector orientations.
For a long mixing time (see Fig. 2), all spins will be redistributed
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Fig. 3. Local phase distribution (left), i.e. the phase distribution at a single position between the two planes relative to its mean, center phase distribution (middle), i.e. the
distribution of the mean phase for the different positions, and the total phase distribution in the sample (right) for the different times of the DWV experiment indicated in
Fig. 1b. The local phase distribution is identical for all spatial positions for each time point shown. Thus, the sample’s phase distribution is the convolution of the local and the
center phase distribution. At the final time t7, the distribution in the sample (lower right) is much broader for parallel wave vector orientations (solid) than that of the
antiparallel orientation (dashed line). For details see text.
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between the planes within the mixing time. This yields identical
distributions spanning an angle of 4a at any position (see Fig. 2). In
other words, the asymmetry between left and right positions is lost.
For such a mirror-symmetric phase distribution, the polarity of the
second wave vector does not matter and identical signals are
obtained for both orientations.
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Similarly, finite gradient pulse durations and diffusion times re-
duce the signal difference. For short diffusion times, the mixup will
be incomplete and the phase distributions at each position will still
reflect the phase tilt induced by the dephasing gradient at that po-
sition. Thus, the rephasing gradient will compensate for some of
the phase tilt which reduces the angular range covered and, thus,
the signal difference. This also holds for long gradient pulses. Be-
cause they do not perform an instantaneous phase tilt, the spins
can diffuse during the encoding. The accumulated phase tilt then
represents the averaged phase tilt along their path. Thus, extreme
phases like ±a are lost and the total angular phase range covered is
reduced.

2.4. Diffusion in a box

Now the diffusion of spins in a quadratic box will be considered
(Fig. 4a). It is assumed to be in the isocenter, and the wave vectors
are supposed to be oriented perpendicular to the restricting walls
with the first wave vector along the left–right direction without
loss of generality (w.l.o.g.). The second wave vector is assumed to
be in a parallel, antiparallel, or orthogonal orientation, the latter,
w.l.o.g., in up–down direction. As for the parallel planes, the spins
in the center of the box are unaffected by the gradient pulses for
both, left–right and up–down wave vector directions. The phases
of the spins in the left and right column are tilted in opposite direc-
tions for wave vectors along the left–right directions, the phases of
the spins in the upper and lower row accordingly for a wave vector
along the up–down direction.

For the phase evolution during a diffusion period, only the posi-
tion coordinate along the direction of the corresponding wave vec-
tor is relevant. This means that different coordinates in a
perpendicular direction need not to be distinguished but can be con-
sidered together. For instance, for the first wave vector (left–right),
the spins within each of the individual columns (left, middle, right)
will be affected equally and can be merged to a single arrow ‘‘bou-
quet’’. Because prior to the wave vector, the phases are identical,
the corresponding ‘‘bouquets’’ contain only a single phase (Fig. 4a).

The phase evolutions and distributions for the first wave vector
and even for two wave vectors with parallel or antiparallel orien-
tation are identical to those presented in Figs. 2 and 3 for the par-
allel planes. Of course, the diffusion in up–down direction differs
for the two geometries but this displacement is not encoded by
gradient pulses as both wave vectors were assumed to be oriented
along the left–right direction. However, this is different for the
orthogonal direction as will be seen below.

Note that these arguments analogously apply for a cubic box
(Fig. 4a). In this case, any diffusion motion in the third direction
(front–back) does not alter the phase evolution, i.e. the phase evo-
lutions and distributions for the combinations considered above
(parallel, antiparallel) remain valid as well.

2.5. Orthogonal wave vector orientation

For the boxes, an orthogonal wave vector orientation can be
considered because the diffusion is restricted in two orthogonal
directions. The first wave vector will again be assumed in the
left-right direction which yields phase evolutions and distributions
identical to that of Figs. 2 and 3 for t0–t4 (short sm). The second
wave vector is assumed to be along the up–down direction. As
noted above, it then is sufficient to distinguish only upper, middle,
and lower positions during this wave vector’s diffusion period.
However, the different phases present in each ‘‘row’’ or horizontal
‘‘plane’’ prior to the second wave vector (t4 for short sm) must be
considered and combined to a ‘‘bouquet’’ of the phases at the cor-
responding left, middle, and right positions as shown in Fig. 4b.
These ‘‘bouquets’’ are identical for the upper, middle, and lower
row or plane because the phases were caused by the first wave vec-
tor which was applied in left-right direction. These ‘‘bouquets’’
span an angle of 4a and represent the initial configuration for
the phase evolution during the second (orthogonal) wave vector
which is presented in Fig. 4c.

For the time point t4, i.e. after sm which is assumed to be short,
the different vertical positions share the same phase distribution.
Again the third, dephasing gradient pulse introduces a tilt of ±a,
now for the upper and lower positions, respectively (t5). During
the diffusion time, the phases are again completely mixed yielding
identical distributions covering 6a for all positions (t6). The final,
rephasing gradient adds another a tilt (t7) which yields a total dis-
tribution of 8a.

This range is significantly larger than for the antiparallel orien-
tation but is identical for the parallel case. However, the popula-
tions are different compared to the parallel orientation: less
spins have phases with a large tilt angles of ±3a or more while
more spins have smaller tilts of ±a or below. Thus, the signal
amplitude for the orthogonal orientation is lower than for the anti-
parallel orientation but larger than for the parallel case. This can be
seen more clearly by considering the explicit populations of the
different phase states.

The populations are shown in Fig. 4c. As can be seen in Fig. 4b,
the local phase distribution in all three rows or planes considered
is identical to the total phase distribution in the sample after the
first wave vector, i.e. it is the triangular distribution of t3 in
Fig. 3. The third, dephasing gradient pulse (t5) causes a distribution
of the central phase yielding a piecewise quadratic total phase dis-
tributions between �3a and +3a. This distribution is the local
phase distribution after the diffusion time while the center phase
distribution again has collapsed to a d function. The final, rephasing
gradient converts the central phase distribution to a rectangular
distribution. Thus, the total phase distribution now is the convolu-
tion of a piecewise quadratic distribution with a rectangular func-
tion which yields a piecewise cubic distribution. Although it is also
based on the range between ±4a, it is ‘‘sharper’’ than the quadratic
distribution of the parallel orientations (solid gray line) because
the areas, the number of spins, are equal. Thus, the piecewise cubic
distribution has more spins with phases within ±a and less spins
with phases beyond ±2a. Thus, the corresponding signal decay is
lower than for parallel wave vectors but exceeds that of the anti-
parallel orientations which is restricted ±2a (dashed gray line). A
detailed calculation analogous to that performed in Appendix B is
straightforward and yields a decay of 2a2/3 which, in consistency
with the theory, is the average of the decays for parallel and anti-
parallel orientations.

3. Summary

The phase evolution for a DWV experiment at short mixing
times was investigated for two simple example geometries, e.g.,
diffusion between parallel planes oriented perpendicular to the
wave vectors. It can explain the signal difference between parallel
and antiparallel wave vector orientations more comprehensively
and vividly. Taking the populations of the phase states into ac-
count, the factor of three for the signal decays expected from the
theory is reproduced. Analogously, the signal decay for an orthog-
onal wave vector orientation can be obtained for spins diffusing in
a box. It yields the average of the parallel and antiparallel decays
which is also consistent with the theory.

Thus, the presented phase evolution approach reproduces the
crucial property of a DWV experiment at short mixing time, the
three-fold higher signal decay for parallel compared to antiparallel
wave vector orientations, in simple example systems from a more
pictorial point-of-view and may help to facilitate the understand-
ing of the underlying effect.
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Appendix A. Theory

Under the assumption of (i) short gradient pulse durations d, i.e.
d ? 0 for a constant wave vector amplitude q, (ii) a short mixing
time sm ? 0 (cf. Fig. 1), (iii) long diffusion times D, i.e. D ?1,
(iv) fully restricted diffusion, and (v) an isotropic orientation distri-
bution of identical pores, the MR signal of a DWV experiment
according to Fig. 1a, expanded to second order, has been shown
to obey [3]

Mðq1;q2Þ / 1� 1
3

q2hR2ið2þ cos hÞ ðA:1Þ

where q1 and q2 are the two wave vectors with qi = cdGi (q1 = q2 = q,
c: gyromagnetic ratio, G: gradient amplitude), h is the angle be-
tween the two wave vectors, i.e. cosh = q1 � q2/q1q2, and hR2i is the
mean-squared radius of gyration

hR2i ¼
Z

pore
r2qðrÞdr ðA:2Þ

with the spin density q(r).
Equation (A.1) is an approximation for small wave vectors. It

implies that the signal decay for a parallel wave vector orientation
(h = 0�) is three times that for an antiparallel orientation (h = 180�).
Furthermore, the signal for orthogonal wave vector orientations
(h = 90�) is expected to be the average of the signal for parallel
and antiparallel orientations.

Appendix B. Signal calculations

For arbitrary experiments, the signal within a given volume can
be calculated by considering the spin density and the phase u(r)
according to

M ¼
Z

volume
qðrÞeiuðrÞ dr ðA:3Þ

which is valid for any q. If the phases u are limited to a small range
of values, for instance because only a small wave vector q was used
in diffusion-weighted experiments (u / q), the phase factor can be
expanded which, performed up to second order (Gaussian phase
approximation), yields
−α−4α −3α −2α 0 α 2α 3α 4α

antiparallel

−α−4α −3α −2α 0 α 2α 3α 4α

parallel

Fig. A1. Comparison of the final local phase distributions for antiparallel and
parallel wave vector orientations. They are equivalent if the triangles are shifted
accordingly. The gray lines indicate the mean phase for each sub-distribution. For
details see text.
M ¼
Z

volume
qðrÞ 1þ iuðrÞ � 1

2
u2ðrÞ

� �
dr ðA:4Þ

which can be converted to an integration over u

M ¼
Z p

�p
qðuÞ 1þ iu� 1

2
u2

� �
du ðA:5Þ

where q(u) denotes the population density of the phase u, i.e. the
phase distribution function considered in the manuscript. Defining
the mean phase as zero, i.e.

R
qðrÞuðrÞdr ¼ 0, Eq. (A.5) reduces to

M ¼
Z p

�p
qðuÞdu� 1

2

Z p

�p
qðuÞu2 du

¼ 1� 1
2

Z p

�p
qðuÞu2 du ðA:6Þ

For the triangular phase distribution of the antiparallel wave
vector orientation, the signal calculation is straightforward:

Manti ¼ 1� 1
2

Z þ2a

�2a
qantiðuÞ u2 du ¼ 1�

Z 2a

0
qantiðuÞ u2 du

¼ 1� 1
2a

Z 2a

0
1� u

2a

� �
u2 du ¼ 1� 1

2a
1
3
u3

����
2a

0
� 1

8a
u4

����
2a

0

 !

¼ 1� 1
2a

8
3
a3 � 2a3

� �
¼ 1� 1

3
a2 ðA:7Þ

For the parallel orientation, the phase distribution as a result of
the convolution of the trapezoidal with the rectangular shapes is
piecewise quadratic and is defined according to

qparðuÞ ¼
1

32a3

ðuþ 4aÞ2 for � 4a 6 u < �2a
ð8a2 �u2Þ for � 2a 6 u 6 þ2a
ðu� 4aÞ2 for þ 2a < u 6 þ4a
0 else

8>>>><
>>>>:

ðA:8Þ

This yields

Mpar¼1�1
2

Z þ4a

�4a
qparðuÞu2 du¼1�

Z 4a

0
qparðuÞu2 du

¼1� 1
32a3

Z 2a

0
ð8a2�u2Þu2 duþ

Z 4a

2a
ðu�4aÞ2u2 du

� �

¼1� 1
32a3

8a2

3
u3

����
2a

0
�1

5
u5

����
2a

0
þ1

5
u5

����
4a

2a
�8a

4
u4

����
4a

2a
þ16a2

3
u3

����
4a

2a

 !

¼1� 1
32a3a

5 64
3
�32

5
þ1024

5
�32

5
�512þ32þ1024

3
�128

3

� �
¼1�a2 ðA:9Þ

i.e. a three-fold signal decay compared to the antiparallel
orientation.

The signal for the parallel orientation can also be estimated less
tediously by considering the two local phase distributions. The
rectangular distribution for the parallel orientation, can be decom-
posed into a lower rectangle of half height and two triangles
(Fig. A1). Shifting these triangles by ±2a yields the trapezoidal dis-
tribution of the parallel orientation. In other words, the two local
phase distributions differ only by a shift of the two triangular
contributions.

The signal decay according to Eq. (A.6) represents the second
moment of q(u). Keeping in mind the parallel axes rule for the mo-
ment of inertia, it can be concluded that the second order term of
the signal decay for q(u) shifted by u0 from its mean value, in-
creases by u2

0=2, where the factor of 1/2 is the prefactor appearing
in Eq. (A.6). The mean phases u0 of the triangles in Fig. A1 are ±a/3
for the antiparallel orientation and ±5a/3 for the parallel orienta-
tion. Thus, the difference of the shift contributions to the signal de-
cay for each triangle is given by 1

2
5a
3

� �2 � a
3

� �2
h i

¼ 4a2

3 . Taking the
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relative population of a triangle into account (1/4), the shift effect
for each triangle is a2/3.

This value is identical to the antiparallel signal decay. Because
the difference between the parallel and antiparallel signal decays
was given only by the shift of the two triangular contributions,
the signal decay of the parallel orientations is three times that of
the antiparallel orientation. These considerations were based on
the local phase distributions. However, as the total phase distribu-
tion effectively is the sum of the local distributions, the conclusion
also holds for the sample’s signal.
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